Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2400627, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724020

RESUMO

Programmable and reconfigurable optics hold significant potential for transforming a broad spectrum of applications, spanning space explorations to biomedical imaging, gas sensing, and optical cloaking. The ability to adjust the optical properties of components like filters, lenses, and beam steering devices could result in dramatic reductions in size, weight, and power consumption in future optoelectronic devices. Among the potential candidates for reconfigurable optics, chalcogenide-based phase change materials (PCMs) offer great promise due to their non-volatile and analogue switching characteristics. Although PCM have found widespread use in electronic data storage, these memory devices are deeply sub-micron-sized. To incorporate phase change materials into free-space optical components, it is essential to scale them up to beyond several hundreds of microns while maintaining reliable switching characteristics. This study demonstrated a non-mechanical, non-volatile transmissive filter based on low-loss PCMs with a 200 µm×200 µm switching area. The device/metafilter can be consistently switched between low- and high-transmission states using electrical pulses with a switching contrast ratio of 5.5 dB. The device was reversibly switched for 1250 cycles before accelerated degradation took place. The work represents an important step toward realizing free-space reconfigurable optics based on PCMs. This article is protected by copyright. All rights reserved.

2.
Small ; 19(50): e2304145, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649187

RESUMO

Reconfigurable or programmable photonic devices are rapidly growing and have become an integral part of many optical systems. The ability to selectively modulate electromagnetic waves through electrical stimuli is crucial in the advancement of a variety of applications from data communication and computing devices to environmental science and space explorations. Chalcogenide-based phase-change materials (PCMs) are one of the most promising material candidates for reconfigurable photonics due to their large optical contrast between their different solid-state structural phases. Although significant efforts have been devoted to accurate simulation of PCM-based devices, in this paper, three important aspects which have often evaded prior models yet having significant impacts on the thermal and phase transition behavior of these devices are highlighted: the enthalpy of fusion, the heat capacity change upon glass transition, as well as the thermal conductivity of liquid-phase PCMs. The important topic of switching energy scaling in PCM devices, which also helps explain why the three above-mentioned effects have long been overlooked in electronic PCM memories but only become important in photonics, is further investigated. These findings offer insight to facilitate accurate modeling of PCM-based photonic devices and can inform the development of more efficient reconfigurable optics.

3.
Adv Mater ; 35(29): e2212098, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37129959

RESUMO

Since the recognition of a significant oxygen-redox contribution to enhancing the capacity of Li transition-metal oxide cathodes, the oxygen release and subsequent structural variations together with capacity fading are critical issues to achieve better electrochemical performance. As most previous reports dealt with the structural degradation of cathodes after electrochemical cycling, it is fairly difficult to clarify how substantial the effect of lattice strain on the oxygen release will be while exclusively ruling out any electrochemical influences. By utilizing nanoindentation and mechanical surface polishing of single-crystal LiCoO2 and Li2 MnO3 , the local variations of both the atomic structure and oxygen content are scrutinized. Atomic-column-resolved imaging reveals that local LiM (M = Co and Mn) disordering and further amorphization are induced by mechanical strain. Moreover, substantial oxygen deficiency in the regions with these structural changes is directly identified by spectroscopic analyses. Ab initio density functional theory calculations also demonstrate energetically favorable formation of oxygen vacancies under shear strain. Providing direct evidence of oxygen release as a consequence of lattice strain, the findings in this work suggest that efficient strain relaxation will be of great significance for longevity of the anion framework in layered oxide cathodes.

4.
Nat Commun ; 14(1): 2255, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081020

RESUMO

Since two major criteria for melting were proposed by Lindemann and Born in the early 1900s, many simulations and observations have been carried out to elucidate the premelting phenomena largely at the crystal surfaces and grain boundaries below the bulk melting point. Although dislocations and clusters of vacancies and interstitials were predicted as possible origins to trigger the melting, experimental direct observations demonstrating the correlation of premelting with lattice defects inside a crystal remain elusive. Using atomic-column-resolved imaging with scanning transmission electron microscopy in polycrystalline BaCeO3, here we clarify the initiation of melting at two-dimensional faults inside the crystals below the melting temperature. In particular, melting in a layer-by-layer manner rather than random nucleation at the early stage was identified as a notable finding. Emphasizing the value of direct atomistic observation, our study suggests that lattice defects inside crystals should not be overlooked as preferential nucleation sites for phase transformation including melting.

5.
Dalton Trans ; 52(7): 1885-1894, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36723214

RESUMO

Since the high configurational entropy-driven structural stability of multicomponent oxide system was proposed Rost et al. in 2015, many experiments and simulations have been done to develop new multicomponent oxides. Although many notable findings have shown unique physical and chemical properties, high configurational entropy oxide systems that have more than 3 distinct cation sites are yet to be developed. By utilizing atomic-scale direct imaging with scanning transmission electron microscopy and AC-impedance spectroscopy analysis, we demonstrated for the first time that a multicomponent equimolar proton-conducting quadruple hexagonal perovskite-related Ba5RE2Al2ZrO13 (RE = rare earth elements) oxide system can be synthesized even when adding eight different rare earth elements. In particular, as the number of added elements was increased, i.e., as the configurational entropy was increased, we confirmed that the chemical stability toward CO2 was improved without a significant decrement of the proton conductivity. The findings in this work broaden the use of the crystal structure to which the multicomponent model can be applied, and a systematic study on the correlation between the configurational entropy and proton conductivity and/or chemical stability is noteworthy.

6.
Nat Commun ; 12(1): 5527, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545102

RESUMO

As the physical properties of ABX3 perovskite-based oxides strongly depend on the geometry of oxygen octahedra containing transition-metal cations, precise identification of the distortion, tilt, and rotation of the octahedra is an essential step toward understanding the structure-property correlation. Here we discover an important electrostatic origin responsible for remarkable Jahn-Teller-type tetragonal distortion of oxygen octahedra during atomic-level direct observation of two-dimensional [AX] interleaved shear faults in five different perovskite-type materials, SrTiO3, BaCeO3, LaCoO3, LaNiO3, and CsPbBr3. When the [AX] sublayer has a net charge, for example [LaO]+ in LaCoO3 and LaNiO3, substantial tetragonal elongation of oxygen octahedra at the fault plane is observed and this screens the strong repulsion between the consecutive [LaO]+ layers. Moreover, our findings on the distortion induced by local charge are identified to be a general structural feature in lanthanide-based An + 1BnX3n + 1-type Ruddlesden-Popper (RP) oxides with charged [LnO]+ (Ln = La, Pr, Nd, Eu, and Gd) sublayers, among more than 80 RP oxides and halides with high symmetry. The present study thus demonstrates that the local uneven electrostatics is a crucial factor significantly affecting the crystal structure of complex oxides.

7.
Nat Commun ; 12(1): 4599, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326335

RESUMO

An initial crystalline phase can transform into another phases as cations are electrochemically inserted into its lattice. Precise identification of phase evolution at an atomic level during transformation is thus the very first step to comprehensively understand the cation insertion behavior and subsequently achieve much higher storage capacity in rechargeable cells, although it is sometimes challenging. By intensively using atomic-column-resolved scanning transmission electron microscopy, we directly visualize the simultaneous intercalation of both H2O and Zn during discharge of Zn ions into a V2O5 cathode with an aqueous electrolyte. In particular, when further Zn insertion proceeds, multiple intermediate phases, which are not identified by a macroscopic powder diffraction method, are clearly imaged at an atomic scale, showing structurally topotactic correlation between the phases. The findings in this work suggest that smooth multiphase evolution with a low transition barrier is significantly related to the high capacity of oxide cathodes for aqueous rechargeable cells, where the crystal structure of cathode materials after discharge differs from the initial crystalline state in general.

8.
ACS Appl Mater Interfaces ; 12(39): 43720-43727, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32877165

RESUMO

Cu-based p-type semiconducting oxides have been sought for water-reduction photocathodes to enhance the energy-conversion efficiency in photoelectrochemical cells. CuBi2O4 has recently attracted notable attention as a new family of p-type oxides, based on its adequate band gap. Although the identification of a major defect structure should be the first step toward understanding the electronic conduction behavior, no direct experimental analysis has been carried out yet. Using atomic-scale scanning transmission electron microscopy together with chemical probing, we identify a substantial amount of BiCu-CuBi antisite intermixing as a major point-defect type. Our density functional theory calculations also show that antisite BiCu can seriously hinder the hole-polaron hopping between Cu, in agreement with lower conductivity and a larger thermal activation barrier under a higher degree of intermixing. These findings highlight the value of the direct identification of point defects for a better understanding of electronic properties in complex oxides.

9.
J Phys Chem Lett ; 11(17): 7253-7260, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32677839

RESUMO

A great deal of research has recently been focused on Ruddlesden-Popper (RP) two-dimensional planar faults consisting of intervened [AO] monolayers in an ABO3 perovskite framework due to the structurally peculiar shear configuration. In this work, we scrutinize the effect of elastic strain on the generation behavior of RP faults, which are electrocatalytically very active sites for the oxygen evolution reaction (OER), in (001) epitaxial LaNiO3 thin films through by using two distinct single-crystal substrates with different cubic lattice parameters. Atomic-scale direct observations reveal that RP faults can be more favorably created when tensile misfit strain is exerted. Furthermore, we demonstrate that the controlled growth of thin films show notably enhanced OER activity by the RP faults. The findings in this study highlight the impact of symmetry-breaking defect formation for better oxygen electrocatalysis in perovskite oxides.

10.
Nano Lett ; 18(2): 1110-1117, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29357254

RESUMO

In many ion-conducting polycrystalline oxides, grain boundaries are generally accepted as rate-limiting obstacles to rapid ionic diffusion, often resulting in overall sluggish transport. Consequently, based on a precise understanding of the structural and compositional features at grain boundaries, systematic control of the polycrystalline microstructure is a key factor to achieve better ionic conduction performance. In this study, we clarify that a nanometer-thick amorphous phase at most grain boundaries in proton-conducting BaCeO3 polycrystals is responsible for substantial retardation of proton migration and moreover is very reactive with water and carbon dioxide gas. By a combination of atomic-scale chemical analysis and physical imaging, we demonstrate that highly densified BaCeO3 polycrystals free of a grain-boundary amorphous phase can be easily fabricated by a conventional ceramic process and show sufficiently high proton conductivity together with significantly improved chemical stability. These findings emphasize the value of direct identification of intergranular phases and subsequent manipulation of their distribution in ion-conducting oxide polycrystals.

11.
Nat Commun ; 8(1): 1417, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29127289

RESUMO

Although theoretical studies and experimental investigations have demonstrated the presence of space-charge-induced dopant segregation, most work has been confined largely to the crystal-free surface and some special grain boundaries, and to the best of our knowledge there has been no systematic comparison to understand how the segregation varies at different types of interfaces in polycrystals. Here, through atomic-column resolved scanning transmission electron microscopy in real polycrystalline samples, we directly elucidate the space-charge segregation features at five distinct types of interfaces in an ABO3 perovskite oxide doped with A- and B-site donors. A series of observations reveals that both the interfacial atomic structure and the subsequent segregation behaviour are invariant regardless of the interface type. The findings in this study thus suggest that the electrostatic potential variation by the interface excess charge and compensating space charge provides a crucial contribution to determining not only the distribution of dopants but also the interfacial structure in oxides.

12.
Nano Lett ; 17(5): 3126-3132, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28394129

RESUMO

Atomic-scale direct probing of active sites and subsequent elucidation of the structure-activity relationship are important issues involving oxide-based electrocatalysts to achieve better electrochemical conversion efficiency. By generating Ruddlesden-Popper (RP) two-dimensional homologous faults via simple control of the cation nonstoichiometry in LaNiO3 thin films, we demonstrate that strong tetragonal distortion of [NiO6] octahedra is induced by more than 20% elongation of Ni-O bonds in the faults. In addition to direct visualization of the elongation by scanning transmission electron microscopy, we identify that the distorted [NiO6] octahedra in the faults show considerably higher electrocatalytic activities than other surface sites during the electrochemical oxygen evolution reaction. This unequivocal evidence of the octahedral distortion and its impact on electrocatalysis in LaNiO3 suggests that the formation of RP-type faults can provide an efficient way to control the octahedral geometry and thereby remarkably enhance the oxygen catalytic performance of perovskite oxides.

13.
Angew Chem Int Ed Engl ; 55(33): 9680-4, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27412027

RESUMO

Since the first prediction by Frenkel, many follow-up studies have been carried out to show the presence of subsurface space-charge layers having the opposite sign to that of the excess charge at the surface, producing overall neutrality in ionic crystals. However, no precise experimental evidence demonstrating how the aliovalent solutes segregate in the space-charge region beneath the surface has been provided over the past several decades. By utilizing atomic-scale imaging and chemical probing in a perovskite oxide, the origin of the surface excess charge at the topmost surface and the position of segregated dopants in the space-charge region is precisely determined. The impact of the space-charge contribution to the dopant distribution near the surface in oxide crystals is explored.

14.
Angew Chem Int Ed Engl ; 54(27): 7963-7, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26013702

RESUMO

Using spinel-type Li(Mn(1.5)Ni(0.5) )O4 with two different cations, Mn and Ni, in the oxygen octahedra as a model system, we show that a cation ordering transition takes place through the formation of Frenkel-type point defects. A series of experimental results based on atomic-scale observations and in situ powder diffractions along with ab initio calculations consistently support such defect-mediated transition behavior. In addition to providing a precise suggestion of the intermediate transient states and the resulting kinetic pathway during the transition between two phases, our findings emphasize the significant role of point defects in ordering transformation of complex oxides.

15.
J Nanosci Nanotechnol ; 15(11): 8508-14, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26726543

RESUMO

As the development of manufacturing technology for electronic devices, propresses it is necessary to study manufacturing technologies for mass storage, low-volume, improved reliability, and low cost materials for electronic devices used in data communication. The noble metals are the most commonly used raw materials used in such manufacturing. However, the raw materials (Ag, Pt, etc.) are expensive and raise the manufacturing cost. So, there is a need to replace these materials with raw materials of low cost. Recently, the much-cheaper Cu has received attention in that it has the same properties as the noble metals. Cu has good physical and chemical properties. However, its anti-oxidation is weak. Therefore, to make up for this weak point, research has generally been conducted to find a method to coat copper with a noble metal. The coating, comprised of the noble metal, is strong against the oxidation of the Cu surface. In this study, we made Cu@Ag core-shell nanoparticles; these particles have the same level of electro-conductivity as Ag. These materials are expected to reduce the product cost of raw materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...